Einstein summation convention.

ebcc.util.einsumfunc.CONTRACTION_METHOD = 'backend' module-attribute

The size of the contraction to fall back on the backend.

ebcc.util.einsumfunc.BACKEND_EINSUM_SIZE = 1000 module-attribute

The size of the contraction to let the backend optimize.

ebcc.util.einsumfunc.BACKEND_OPTIMIZE_SIZE = 100 module-attribute

Symbols used in einsum-like functions.

ebcc.util.einsumfunc.EinsumOperandError

Bases: ValueError

Exception for invalid inputs to einsum.

ebcc.util.einsumfunc.einsum(*operands, alpha=1.0, beta=0.0, out=None, contract=None, optimize=True)

Evaluate an Einstein summation convention on the operands.

Using the Einstein summation convention, many common multi-dimensional, linear algebraic array operations can be represented in a simple fashion. In implicit mode einsum computes these values.

In explicit mode, einsum provides further flexibility to compute other array operations that might not be considered classical Einstein summation operations, by disabling, or forcing summation over specified subscript labels.

See the numpy.einsum documentation for clarification.

Parameters:
  • operands (OperandType[T], default: () ) –

    Any valid input to numpy.einsum.

  • alpha (T, default: 1.0 ) –

    Scaling factor for the contraction.

  • beta (T, default: 0.0 ) –

    Scaling factor for the output.

  • out (Optional[NDArray[T]], default: None ) –

    If provided, the calculation is done into this array.

  • contract (Optional[Callable[..., NDArray[T]]], default: None ) –

    The function to use for contraction.

  • optimize (bool, default: True ) –

    If True, use the numpy.einsum_path to optimize the contraction.

Returns:
  • NDArray[T]

    The calculation based on the Einstein summation convention.

Source code in ebcc/util/einsumfunc.py
def einsum(
    *operands: OperandType[T],
    alpha: T = 1.0,  # type: ignore[assignment]
    beta: T = 0.0,  # type: ignore[assignment]
    out: Optional[NDArray[T]] = None,
    contract: Optional[Callable[..., NDArray[T]]] = None,
    optimize: bool = True,
) -> NDArray[T]:
    """Evaluate an Einstein summation convention on the operands.

    Using the Einstein summation convention, many common
    multi-dimensional, linear algebraic array operations can be
    represented in a simple fashion. In *implicit* mode `einsum`
    computes these values.

    In *explicit* mode, `einsum` provides further flexibility to compute
    other array operations that might not be considered classical
    Einstein summation operations, by disabling, or forcing summation
    over specified subscript labels.

    See the `numpy.einsum` documentation for clarification.

    Args:
        operands: Any valid input to `numpy.einsum`.
        alpha: Scaling factor for the contraction.
        beta: Scaling factor for the output.
        out: If provided, the calculation is done into this array.
        contract: The function to use for contraction.
        optimize: If `True`, use the `numpy.einsum_path` to optimize the contraction.

    Returns:
        The calculation based on the Einstein summation convention.
    """
    # Parse the kwargs
    inp, outs, args = _parse_einsum_input(list(operands))  # type: ignore
    subscript = "%s->%s" % (inp, outs)

    # Get the contraction function
    if contract is None:
        contract = {
            "backend": _contract_backend,
            "ttgt": _contract_ttgt,
            "tblis": _contract_tblis,
        }[CONTRACTION_METHOD.lower()]

    # Perform the contraction
    if not len(args):
        raise ValueError("No input operands")
    elif len(args) == 1:
        # If it's just a transpose, use numpy
        res = _transpose_backend(subscript, args[0], alpha=alpha, beta=beta, out=out)
    elif len(args) == 2:
        # If it's a single contraction, call the backend directly
        res = contract(subscript, args[0], args[1], alpha=alpha, beta=beta, out=out)
    else:
        # If it's a chain of contractions, use the path optimizer
        args = list(args)
        path_kwargs = dict(optimize=optimize, einsum_call=True)
        contractions = np.einsum_path(subscript, *args, **path_kwargs)[1]
        for contraction in contractions:
            inds, idx_rm, einsum_str, remain = list(contraction[:4])
            contraction_args = [args.pop(x) for x in inds]  # type: ignore
            if alpha != 1.0 or beta != 0.0:
                raise NotImplementedError("Scaling factors not supported for >2 arguments")
            if len(contraction_args) == 1:
                a = contraction_args[0]
                res = _transpose_backend(
                    einsum_str, a, alpha=types[float](1.0), beta=types[float](0.0), out=None
                )
            elif len(contraction_args) == 2:
                a, b = contraction_args
                res = contract(
                    einsum_str, a, b, alpha=types[float](1.0), beta=types[float](0.0), out=None
                )
            else:
                res = np.einsum(einsum_str, *contraction_args, optimize=True)
            args.append(res)

    return res

ebcc.util.einsumfunc.dirsum(*operands)

Direct sum of arrays.

Follows the numpy.einsum input conventions.

Parameters:
  • operands (Union[str, tuple[int, ...], NDArray[T]], default: () ) –

    Any valid input to numpy.einsum.

Returns:
  • NDArray[T]

    The direct sum of the arrays.

Source code in ebcc/util/einsumfunc.py
def dirsum(*operands: Union[str, tuple[int, ...], NDArray[T]]) -> NDArray[T]:
    """Direct sum of arrays.

    Follows the `numpy.einsum` input conventions.

    Args:
        operands: Any valid input to `numpy.einsum`.

    Returns:
        The direct sum of the arrays.
    """
    # Parse the input
    input_str, output_str, input_arrays = _parse_einsum_input(list(operands))
    input_chars = input_str.split(",")

    for i, (chars, array) in enumerate(zip(input_chars, input_arrays)):
        if len(chars) != array.ndim:
            raise ValueError(f"Dimension mismatch for array {i}.")
        if len(set(chars)) != len(chars):
            unique_chars = "".join(set(chars))
            array = einsum(f"{chars}->{unique_chars}", array)
            input_chars[i] = unique_chars
        if i == 0:
            res = array
        else:
            shape = res.shape + (1,) * array.ndim
            res = np.reshape(res, shape) + array

    # Reshape the output
    res = einsum(f"{''.join(input_chars)}->{output_str}", res)

    return res