Unrestricted Brueckner-orbital coupled cluster.
ebcc.opt.ubrueckner.BruecknerUEBCC(cc, options=None, **kwargs)
Bases: BaseBruecknerEBCC
Unrestricted Brueckner-orbital coupled cluster.
Source code in ebcc/opt/base.py
def __init__(
self,
cc: BaseEBCC,
options: Optional[BaseOptions] = None,
**kwargs: Any,
) -> None:
r"""Initialise the Brueckner EBCC object.
Args:
cc: Parent `EBCC` object.
options: Options for the EOM calculation.
**kwargs: Additional keyword arguments used to update `options`.
"""
# Options:
if options is None:
options = self.Options()
self.options = options
for key, val in kwargs.items():
setattr(self.options, key, val)
# Parameters:
self.cc = cc
self.mf = cc.mf
self.space = cc.space
self.log = cc.log
# Attributes:
self.converged = False
# Logging:
init_logging(cc.log)
cc.log.info(f"\n{ANSI.B}{ANSI.U}{self.name}{ANSI.R}")
cc.log.debug(f"{ANSI.B}{'*' * len(self.name)}{ANSI.R}")
cc.log.debug("")
cc.log.info(f"{ANSI.B}Options{ANSI.R}:")
cc.log.info(f" > e_tol: {ANSI.y}{self.options.e_tol}{ANSI.R}")
cc.log.info(f" > t_tol: {ANSI.y}{self.options.t_tol}{ANSI.R}")
cc.log.info(f" > max_iter: {ANSI.y}{self.options.max_iter}{ANSI.R}")
cc.log.info(f" > diis_space: {ANSI.y}{self.options.diis_space}{ANSI.R}")
cc.log.info(f" > diis_min_space: {ANSI.y}{self.options.diis_min_space}{ANSI.R}")
cc.log.info(f" > damping: {ANSI.y}{self.options.damping}{ANSI.R}")
cc.log.debug("")
ebcc.opt.ubrueckner.BruecknerUEBCC.get_rotation_matrix(u_tot=None, damping=None, t1=None)
Update the rotation matrix.
Also returns the total rotation matrix.
Parameters: |
|
---|
Returns: |
|
---|
Source code in ebcc/opt/ubrueckner.py
def get_rotation_matrix(
self,
u_tot: Optional[SpinArrayType] = None,
damping: Optional[BaseDamping] = None,
t1: Optional[SpinArrayType] = None,
) -> tuple[SpinArrayType, SpinArrayType]:
"""Update the rotation matrix.
Also returns the total rotation matrix.
Args:
u_tot: Total rotation matrix.
damping: Damping object.
t1: T1 amplitude.
Returns:
Rotation matrix and total rotation matrix.
"""
if t1 is None:
t1 = self.cc.t1
if u_tot is None:
u_tot = util.Namespace(
aa=np.eye(self.cc.space[0].ncorr, dtype=types[float]),
bb=np.eye(self.cc.space[1].ncorr, dtype=types[float]),
)
t1_block: Namespace[NDArray[T]] = util.Namespace()
zocc = np.zeros((self.cc.space[0].ncocc, self.cc.space[0].ncocc))
zvir = np.zeros((self.cc.space[0].ncvir, self.cc.space[0].ncvir))
t1_block.aa = np.block([[zocc, -t1.aa], [np.transpose(t1.aa), zvir]])
zocc = np.zeros((self.cc.space[1].ncocc, self.cc.space[1].ncocc))
zvir = np.zeros((self.cc.space[1].ncvir, self.cc.space[1].ncvir))
t1_block.bb = np.block([[zocc, -t1.bb], [np.transpose(t1.bb), zvir]])
u = util.Namespace(aa=scipy.linalg.expm(t1_block.aa), bb=scipy.linalg.expm(t1_block.bb))
u_tot.aa = u_tot.aa @ u.aa
u_tot.bb = u_tot.bb @ u.bb
if np.linalg.det(u_tot.aa) < 0:
u_tot.aa = _put(
u_tot.aa, np.ix_(np.arange(u_tot.aa.shape[0]), np.array([0])), -u_tot.aa[:, 0]
)
if np.linalg.det(u_tot.bb) < 0:
u_tot.bb = _put(
u_tot.bb, np.ix_(np.arange(u_tot.aa.shape[0]), np.array([0])), -u_tot.bb[:, 0]
)
a = np.concatenate(
[np.ravel(scipy.linalg.logm(u_tot.aa)), np.ravel(scipy.linalg.logm(u_tot.bb))], axis=0
)
a: NDArray[T] = np.asarray(np.real(a), dtype=types[float])
if damping is not None:
xerr = np.concatenate([t1.aa.ravel(), t1.bb.ravel()])
a = damping(a, error=xerr)
u_tot.aa = scipy.linalg.expm(np.reshape(a[: u_tot.aa.size], u_tot.aa.shape))
u_tot.bb = scipy.linalg.expm(np.reshape(a[u_tot.aa.size :], u_tot.bb.shape))
return u, u_tot
ebcc.opt.ubrueckner.BruecknerUEBCC.transform_amplitudes(u, amplitudes=None)
Transform the amplitudes into the Brueckner orbital basis.
Parameters: |
|
---|
Returns: |
|
---|
Source code in ebcc/opt/ubrueckner.py
def transform_amplitudes(
self, u: SpinArrayType, amplitudes: Optional[Namespace[SpinArrayType]] = None
) -> Namespace[SpinArrayType]:
"""Transform the amplitudes into the Brueckner orbital basis.
Args:
u: Rotation matrix.
amplitudes: Cluster amplitudes.
Returns:
Transformed cluster amplitudes.
"""
if not amplitudes:
amplitudes = self.cc.amplitudes
nocc = (self.cc.space[0].ncocc, self.cc.space[1].ncocc)
ci = {"a": u.aa[: nocc[0], : nocc[0]], "b": u.bb[: nocc[1], : nocc[1]]}
ca = {"a": u.aa[nocc[0] :, nocc[0] :], "b": u.bb[nocc[1] :, nocc[1] :]}
# Transform T amplitudes:
for name, key, n in self.cc.ansatz.fermionic_cluster_ranks(spin_type=self.spin_type):
for comb in util.generate_spin_combinations(n, unique=True):
args = [getattr(self.cc.amplitudes[name], comb), tuple(range(n * 2))]
for i in range(n):
args += [ci[comb[i]], (i, i + n * 2)]
for i in range(n):
args += [ca[comb[i + n]], (i + n, i + n * 3)]
args += [tuple(range(n * 2, n * 4))]
setattr(self.cc.amplitudes[name], comb, util.einsum(*args))
# Transform S amplitudes:
for name, key, n in self.cc.ansatz.bosonic_cluster_ranks(spin_type=self.spin_type):
raise util.ModelNotImplemented # TODO
# Transform U amplitudes:
for name, key, nf, nb in self.cc.ansatz.coupling_cluster_ranks(spin_type=self.spin_type):
raise util.ModelNotImplemented # TODO
return self.cc.amplitudes
ebcc.opt.ubrueckner.BruecknerUEBCC.get_t1_norm(amplitudes=None)
Get the norm of the T1 amplitude.
Parameters: |
|
---|
Returns: |
|
---|
Source code in ebcc/opt/ubrueckner.py
def get_t1_norm(self, amplitudes: Optional[Namespace[SpinArrayType]] = None) -> T:
"""Get the norm of the T1 amplitude.
Args:
amplitudes: Cluster amplitudes.
Returns:
Norm of the T1 amplitude.
"""
if not amplitudes:
amplitudes = self.cc.amplitudes
weight_a = np.linalg.norm(amplitudes["t1"].aa)
weight_b = np.linalg.norm(amplitudes["t1"].bb)
weight: T = (weight_a**2 + weight_b**2) ** 0.5
return weight
ebcc.opt.ubrueckner.BruecknerUEBCC.mo_to_correlated(mo_coeff)
Transform the MO coefficients into the correlated basis.
Parameters: |
|
---|
Returns: |
|
---|
Source code in ebcc/opt/ubrueckner.py
def mo_to_correlated(
self, mo_coeff: tuple[NDArray[T], NDArray[T]]
) -> tuple[NDArray[T], NDArray[T]]:
"""Transform the MO coefficients into the correlated basis.
Args:
mo_coeff: MO coefficients.
Returns:
Correlated slice of MO coefficients.
"""
return (
mo_coeff[0][:, self.cc.space[0].correlated],
mo_coeff[1][:, self.cc.space[1].correlated],
)
ebcc.opt.ubrueckner.BruecknerUEBCC.mo_update_correlated(mo_coeff, mo_coeff_corr)
Update the correlated slice of a set of MO coefficients.
Parameters: |
|
---|
Returns: |
|
---|
Source code in ebcc/opt/ubrueckner.py
def mo_update_correlated(
self,
mo_coeff: tuple[NDArray[T], NDArray[T]],
mo_coeff_corr: tuple[NDArray[T], NDArray[T]],
) -> tuple[NDArray[T], NDArray[T]]:
"""Update the correlated slice of a set of MO coefficients.
Args:
mo_coeff: MO coefficients.
mo_coeff_corr: Correlated slice of MO coefficients.
Returns:
Updated MO coefficients.
"""
space = self.cc.space
mo_coeff = (
_put(
mo_coeff[0],
np.ix_(np.arange(mo_coeff[0].shape[0]), space[0].correlated), # type: ignore
mo_coeff_corr[0],
),
_put(
mo_coeff[1],
np.ix_(np.arange(mo_coeff[1].shape[0]), space[1].correlated), # type: ignore
mo_coeff_corr[1],
),
)
return mo_coeff
ebcc.opt.ubrueckner.BruecknerUEBCC.update_coefficients(u_tot, mo_coeff, mo_coeff_ref)
Update the MO coefficients.
Parameters: |
|
---|
Returns: |
|
---|
Source code in ebcc/opt/ubrueckner.py
def update_coefficients(
self,
u_tot: SpinArrayType,
mo_coeff: tuple[NDArray[T], NDArray[T]],
mo_coeff_ref: tuple[NDArray[T], NDArray[T]],
) -> tuple[NDArray[T], NDArray[T]]:
"""Update the MO coefficients.
Args:
u_tot: Total rotation matrix.
mo_coeff: New MO coefficients.
mo_coeff_ref: Reference MO coefficients.
Returns:
Updated MO coefficients.
"""
mo_coeff_new_corr = (
util.einsum("pi,ij->pj", mo_coeff_ref[0], u_tot.aa),
util.einsum("pi,ij->pj", mo_coeff_ref[1], u_tot.bb),
)
mo_coeff_new = self.mo_update_correlated(mo_coeff, mo_coeff_new_corr)
return mo_coeff_new