Base classes for ebcc.opt.

ebcc.opt.base.BaseOptions(e_tol=1e-08, t_tol=1e-08, max_iter=20, diis_space=9, diis_min_space=1, damping=0.0) dataclass

Bases: _BaseOptions

Options for Brueckner-orbital calculations.

Parameters:
  • e_tol (float, default: 1e-08 ) –

    Threshold for converged in the correlation energy.

  • t_tol (float, default: 1e-08 ) –

    Threshold for converged in the amplitude norm.

  • max_iter (int, default: 20 ) –

    Maximum number of iterations.

  • diis_space (int, default: 9 ) –

    Number of amplitudes to use in DIIS extrapolation.

  • diis_min_space (int, default: 1 ) –

    Minimum number of amplitudes to use in DIIS extrapolation.

  • damping (float, default: 0.0 ) –

    Damping factor for DIIS extrapolation.

ebcc.opt.base.BaseBruecknerEBCC(cc, options=None, **kwargs)

Bases: ABC

Base class for Brueckner-orbital coupled cluster.

Initialise the Brueckner EBCC object.

Parameters:
  • cc (BaseEBCC) –

    Parent EBCC object.

  • options (Optional[BaseOptions], default: None ) –

    Options for the EOM calculation.

  • **kwargs (Any, default: {} ) –

    Additional keyword arguments used to update options.

Source code in ebcc/opt/base.py
def __init__(
    self,
    cc: BaseEBCC,
    options: Optional[BaseOptions] = None,
    **kwargs: Any,
) -> None:
    r"""Initialise the Brueckner EBCC object.

    Args:
        cc: Parent `EBCC` object.
        options: Options for the EOM calculation.
        **kwargs: Additional keyword arguments used to update `options`.
    """
    # Options:
    if options is None:
        options = self.Options()
    self.options = options
    for key, val in kwargs.items():
        setattr(self.options, key, val)

    # Parameters:
    self.cc = cc
    self.mf = cc.mf
    self.space = cc.space
    self.log = cc.log

    # Attributes:
    self.converged = False

    # Logging:
    init_logging(cc.log)
    cc.log.info(f"\n{ANSI.B}{ANSI.U}{self.name}{ANSI.R}")
    cc.log.debug(f"{ANSI.B}{'*' * len(self.name)}{ANSI.R}")
    cc.log.debug("")
    cc.log.info(f"{ANSI.B}Options{ANSI.R}:")
    cc.log.info(f" > e_tol:  {ANSI.y}{self.options.e_tol}{ANSI.R}")
    cc.log.info(f" > t_tol:  {ANSI.y}{self.options.t_tol}{ANSI.R}")
    cc.log.info(f" > max_iter:  {ANSI.y}{self.options.max_iter}{ANSI.R}")
    cc.log.info(f" > diis_space:  {ANSI.y}{self.options.diis_space}{ANSI.R}")
    cc.log.info(f" > diis_min_space:  {ANSI.y}{self.options.diis_min_space}{ANSI.R}")
    cc.log.info(f" > damping:  {ANSI.y}{self.options.damping}{ANSI.R}")
    cc.log.debug("")

ebcc.opt.base.BaseBruecknerEBCC.spin_type property

Get the spin type.

ebcc.opt.base.BaseBruecknerEBCC.name property

Get the name of the method.

ebcc.opt.base.BaseBruecknerEBCC.kernel()

Run the Bruckner-orbital coupled cluster calculation.

Returns:
  • float

    Correlation energy.

Source code in ebcc/opt/base.py
def kernel(self) -> float:
    """Run the Bruckner-orbital coupled cluster calculation.

    Returns:
        Correlation energy.
    """
    timer = util.Timer()

    # Make sure the initial CC calculation is converged:
    if not self.cc.converged:
        with lib.temporary_env(self.cc, log=NullLogger()):
            self.cc.kernel()

    # Set up DIIS:
    damping = self.Damping(options=self.options)

    # Initialise coefficients:
    mo_coeff_new: NDArray[T] = np.copy(np.asarray(self.cc.mo_coeff, dtype=types[float]))
    mo_coeff_ref: NDArray[T] = np.copy(np.asarray(self.cc.mo_coeff, dtype=types[float]))
    mo_coeff_ref = self.mo_to_correlated(mo_coeff_ref)
    u_tot = None

    self.cc.log.output("Solving for Brueckner orbitals.")
    self.cc.log.debug("")
    self.log.info(
        f"{ANSI.B}{'Iter':>4s} {'Energy (corr.)':>16s} {'Energy (tot.)':>18s} "
        f"{'Conv.':>8s} {'Δ(Energy)':>13s} {'|T1|':>13s}{ANSI.R}"
    )
    self.log.info(
        f"%4d %16.10f %18.10f {[ANSI.r, ANSI.g][self.cc.converged]}%8r{ANSI.R}",
        0,
        self.cc.e_corr,
        self.cc.e_tot,
        self.cc.converged,
    )

    converged = False
    for niter in range(1, self.options.max_iter + 1):
        # Update rotation matrix:
        u, u_tot = self.get_rotation_matrix(u_tot=u_tot, damping=damping)

        # Update MO coefficients:
        mo_coeff_new = self.update_coefficients(u_tot, mo_coeff_new, mo_coeff_ref)

        # Transform mean-field and amplitudes:
        self.mf.mo_coeff = numpy.asarray(mo_coeff_new)
        self.mf.e_tot = self.mf.energy_tot()
        amplitudes = self.transform_amplitudes(u)

        # Run CC calculation:
        e_prev = self.cc.e_tot
        with lib.temporary_env(self.cc, log=NullLogger()):
            self.cc.__class__.__init__(
                self.cc,
                self.mf,
                log=self.cc.log,
                ansatz=self.cc.ansatz,
                space=self.cc.space,
                omega=self.cc.omega,
                g=self.cc.bare_g,
                G=self.cc.bare_G,
                options=self.cc.options,
            )
            self.cc.amplitudes = amplitudes
            self.cc.kernel()
        de = abs(e_prev - self.cc.e_tot)
        dt = self.get_t1_norm()

        # Log the iteration:
        converged_e = bool(de < self.options.e_tol)
        converged_t = bool(dt < self.options.t_tol)
        self.log.info(
            f"%4s %16.10f %18.10f {[ANSI.r, ANSI.g][int(converged)]}%8r{ANSI.R}"
            f" {[ANSI.r, ANSI.g][int(converged_e)]}%13.3e{ANSI.R}"
            f" {[ANSI.r, ANSI.g][int(converged_t)]}%13.3e{ANSI.R}",
            niter,
            self.cc.e_corr,
            self.cc.e_tot,
            self.cc.converged,
            de,
            dt,
        )

        # Check for convergence:
        converged = converged_e and converged_t
        if converged:
            self.log.debug("")
            self.log.output(f"{ANSI.g}Converged{ANSI.R}.")
            break
    else:
        self.log.debug("")
        self.log.warning(f"{ANSI.r}Failed to converge{ANSI.R}.")

    self.cc.log.debug("")
    self.cc.log.output("E(corr) = %.10f", self.cc.e_corr)
    self.cc.log.output("E(tot)  = %.10f", self.cc.e_tot)
    self.cc.log.debug("")
    self.cc.log.debug("Time elapsed: %s", timer.format_time(timer()))
    self.cc.log.debug("")

    return self.cc.e_corr

ebcc.opt.base.BaseBruecknerEBCC.get_rotation_matrix(u_tot=None, damping=None, t1=None) abstractmethod

Update the rotation matrix.

Also returns the total rotation matrix.

Parameters:
  • u_tot (Optional[SpinArrayType], default: None ) –

    Total rotation matrix.

  • damping (Optional[BaseDamping], default: None ) –

    Damping object.

  • t1 (Optional[SpinArrayType], default: None ) –

    T1 amplitude.

Returns:
Source code in ebcc/opt/base.py
@abstractmethod
def get_rotation_matrix(
    self,
    u_tot: Optional[SpinArrayType] = None,
    damping: Optional[BaseDamping] = None,
    t1: Optional[SpinArrayType] = None,
) -> tuple[SpinArrayType, SpinArrayType]:
    """Update the rotation matrix.

    Also returns the total rotation matrix.

    Args:
        u_tot: Total rotation matrix.
        damping: Damping object.
        t1: T1 amplitude.

    Returns:
        Rotation matrix and total rotation matrix.
    """
    pass

ebcc.opt.base.BaseBruecknerEBCC.transform_amplitudes(u, amplitudes=None) abstractmethod

Transform the amplitudes into the Brueckner orbital basis.

Parameters:
Returns:
Source code in ebcc/opt/base.py
@abstractmethod
def transform_amplitudes(
    self, u: SpinArrayType, amplitudes: Optional[Namespace[SpinArrayType]] = None
) -> Namespace[SpinArrayType]:
    """Transform the amplitudes into the Brueckner orbital basis.

    Args:
        u: Rotation matrix.
        amplitudes: Cluster amplitudes.

    Returns:
        Transformed cluster amplitudes.
    """
    pass

ebcc.opt.base.BaseBruecknerEBCC.get_t1_norm(amplitudes=None) abstractmethod

Get the norm of the T1 amplitude.

Parameters:
Returns:
  • T

    Norm of the T1 amplitude.

Source code in ebcc/opt/base.py
@abstractmethod
def get_t1_norm(self, amplitudes: Optional[Namespace[SpinArrayType]] = None) -> T:
    """Get the norm of the T1 amplitude.

    Args:
        amplitudes: Cluster amplitudes.

    Returns:
        Norm of the T1 amplitude.
    """
    pass

ebcc.opt.base.BaseBruecknerEBCC.mo_to_correlated(mo_coeff) abstractmethod

Transform the MO coefficients into the correlated basis.

Parameters:
  • mo_coeff (Any) –

    MO coefficients.

Returns:
  • Any

    Correlated slice of MO coefficients.

Source code in ebcc/opt/base.py
@abstractmethod
def mo_to_correlated(self, mo_coeff: Any) -> Any:
    """Transform the MO coefficients into the correlated basis.

    Args:
        mo_coeff: MO coefficients.

    Returns:
        Correlated slice of MO coefficients.
    """
    pass

ebcc.opt.base.BaseBruecknerEBCC.mo_update_correlated(mo_coeff, mo_coeff_corr) abstractmethod

Update the correlated slice of a set of MO coefficients.

Parameters:
  • mo_coeff (Any) –

    MO coefficients.

  • mo_coeff_corr (Any) –

    Correlated slice of MO coefficients.

Returns:
  • Any

    Updated MO coefficients.

Source code in ebcc/opt/base.py
@abstractmethod
def mo_update_correlated(self, mo_coeff: Any, mo_coeff_corr: Any) -> Any:
    """Update the correlated slice of a set of MO coefficients.

    Args:
        mo_coeff: MO coefficients.
        mo_coeff_corr: Correlated slice of MO coefficients.

    Returns:
        Updated MO coefficients.
    """
    pass

ebcc.opt.base.BaseBruecknerEBCC.update_coefficients(u_tot, mo_coeff_new, mo_coeff_ref) abstractmethod

Update the MO coefficients.

Parameters:
  • u_tot (SpinArrayType) –

    Total rotation matrix.

  • mo_coeff_new (Any) –

    New MO coefficients.

  • mo_coeff_ref (Any) –

    Reference MO coefficients.

Returns:
  • Any

    Updated MO coefficients.

Source code in ebcc/opt/base.py
@abstractmethod
def update_coefficients(
    self, u_tot: SpinArrayType, mo_coeff_new: Any, mo_coeff_ref: Any
) -> Any:
    """Update the MO coefficients.

    Args:
        u_tot: Total rotation matrix.
        mo_coeff_new: New MO coefficients.
        mo_coeff_ref: Reference MO coefficients.

    Returns:
        Updated MO coefficients.
    """
    pass