Restricted electron-boson coupled cluster.

ebcc.cc.rebcc.REBCC(mf, log=None, ansatz='CCSD', options=None, space=None, omega=None, g=None, G=None, mo_coeff=None, mo_occ=None, fock=None, **kwargs)

Bases: BaseEBCC

Restricted electron-boson coupled cluster.

Source code in ebcc/cc/base.py
def __init__(
    self,
    mf: SCF,
    log: Optional[Logger] = None,
    ansatz: Optional[Union[Ansatz, str]] = "CCSD",
    options: Optional[BaseOptions] = None,
    space: Optional[SpaceType] = None,
    omega: Optional[NDArray[T]] = None,
    g: Optional[NDArray[T]] = None,
    G: Optional[NDArray[T]] = None,
    mo_coeff: Optional[NDArray[T]] = None,
    mo_occ: Optional[NDArray[T]] = None,
    fock: Optional[BaseFock] = None,
    **kwargs: Any,
) -> None:
    r"""Initialise the EBCC object.

    Args:
        mf: PySCF mean-field object.
        log: Log to write output to. Default is the global logger, outputting to `stderr`.
        ansatz: Overall ansatz.
        options: Options for the EBCC calculation.
        space: Space containing the frozen, correlated, and active fermionic spaces. Default
            assumes all electrons are correlated.
        omega: Bosonic frequencies.
        g: Electron-boson coupling matrix corresponding to the bosonic annihilation operator
            :math:`g_{bpq} p^\dagger q b`. The creation part is assumed to be the fermionic
            conjugate transpose to retain Hermiticity in the Hamiltonian.
        G: Boson non-conserving term :math:`G_{b} (b^\dagger + b)`.
        mo_coeff: Molecular orbital coefficients. Default is the mean-field coefficients.
        mo_occ: Molecular orbital occupation numbers. Default is the mean-field occupation.
        fock: Fock matrix. Default is the mean-field Fock matrix.
        **kwargs: Additional keyword arguments used to update `options`.
    """
    # Options:
    if options is None:
        options = self.Options()
    self.options = options
    for key, val in kwargs.items():
        setattr(self.options, key, val)

    # Parameters:
    self.log = default_log if log is None else log
    self.mf = self._convert_mf(mf)
    self._mo_coeff: Optional[NDArray[T]] = (
        np.asarray(mo_coeff, dtype=types[float]) if mo_coeff is not None else None
    )
    self._mo_occ: Optional[NDArray[T]] = (
        np.asarray(mo_occ, dtype=types[float]) if mo_occ is not None else None
    )

    # Ansatz:
    if isinstance(ansatz, Ansatz):
        self.ansatz = ansatz
    elif isinstance(ansatz, str):
        self.ansatz = Ansatz.from_string(
            ansatz, density_fitting=getattr(self.mf, "with_df", None) is not None
        )
    else:
        raise TypeError("ansatz must be an Ansatz object or a string.")
    self._eqns = self.ansatz._get_eqns(self.spin_type)

    # Space:
    if space is not None:
        self.space = space
    else:
        self.space = self.init_space()

    # Boson parameters:
    if bool(self.fermion_coupling_rank) != bool(self.boson_coupling_rank):
        raise ValueError(
            "Fermionic and bosonic coupling ranks must both be zero, or both non-zero."
        )
    self.omega = np.asarray(omega, dtype=types[float]) if omega is not None else None
    self.bare_g = np.asarray(g, dtype=types[float]) if g is not None else None
    self.bare_G = np.asarray(G, dtype=types[float]) if G is not None else None
    if self.boson_ansatz != "":
        self.g = self.get_g()
        self.G = self.get_mean_field_G()
    else:
        assert self.nbos == 0
        self.options.shift = False
        self.g = None
        self.G = None

    # Fock matrix:
    if fock is None:
        self.fock = self.get_fock()
    else:
        self.fock = fock

    # Attributes:
    self.e_corr = 0.0
    self.amplitudes = util.Namespace()
    self.converged = False
    self.lambdas = util.Namespace()
    self.converged_lambda = False

    # Logging:
    init_logging(self.log)
    self.log.info(f"\n{ANSI.B}{ANSI.U}{self.name}{ANSI.R}")
    self.log.debug(f"{ANSI.B}{'*' * len(self.name)}{ANSI.R}")
    self.log.debug("")
    self.log.info(f"{ANSI.B}Options{ANSI.R}:")
    self.log.info(f" > e_tol:  {ANSI.y}{self.options.e_tol}{ANSI.R}")
    self.log.info(f" > t_tol:  {ANSI.y}{self.options.t_tol}{ANSI.R}")
    self.log.info(f" > max_iter:  {ANSI.y}{self.options.max_iter}{ANSI.R}")
    self.log.info(f" > diis_space:  {ANSI.y}{self.options.diis_space}{ANSI.R}")
    self.log.info(f" > diis_min_space:  {ANSI.y}{self.options.diis_min_space}{ANSI.R}")
    self.log.info(f" > damping:  {ANSI.y}{self.options.damping}{ANSI.R}")
    self.log.debug("")
    self.log.info(f"{ANSI.B}Ansatz{ANSI.R}: {ANSI.m}{self.ansatz}{ANSI.R}")
    self.log.debug("")
    self.log.info(f"{ANSI.B}Space{ANSI.R}: {ANSI.m}{self.space}{ANSI.R}")
    self.log.debug("")
    if self.boson_ansatz != "":
        self.log.info(f"{ANSI.B}Bosons{ANSI.R}: {ANSI.m}{self.nbos}{ANSI.R}")
        self.log.info(" > Energy shift due to polaritonic basis:  %.10f", self.const)
        self.log.debug("")

ebcc.cc.rebcc.REBCC.spin_type property

Get a string representation of the spin type.

ebcc.cc.rebcc.REBCC.xi property

Get the shift in the bosonic operators to diagonalise the photon Hamiltonian.

Returns:
  • NDArray[T]

    Shift in the bosonic operators.

ebcc.cc.rebcc.REBCC.nmo property

Get the number of molecular orbitals.

Returns:
  • int

    Number of molecular orbitals.

ebcc.cc.rebcc.REBCC.nocc property

Get the number of occupied molecular orbitals.

Returns:
  • int

    Number of occupied molecular orbitals.

ebcc.cc.rebcc.REBCC.nvir property

Get the number of virtual molecular orbitals.

Returns:
  • int

    Number of virtual molecular orbitals.

ebcc.cc.rebcc.REBCC.ip_eom(**kwargs)

Get the IP-EOM object.

Parameters:
  • options

    Options for the IP-EOM calculation.

  • **kwargs (Any, default: {} ) –

    Additional keyword arguments.

Returns:
Source code in ebcc/cc/rebcc.py
def ip_eom(self, **kwargs: Any) -> IP_REOM:
    """Get the IP-EOM object.

    Args:
        options: Options for the IP-EOM calculation.
        **kwargs: Additional keyword arguments.

    Returns:
        IP-EOM object.
    """
    return IP_REOM(self, **kwargs)

ebcc.cc.rebcc.REBCC.ea_eom(**kwargs)

Get the EA-EOM object.

Parameters:
  • options

    Options for the EA-EOM calculation.

  • **kwargs (Any, default: {} ) –

    Additional keyword arguments.

Returns:
Source code in ebcc/cc/rebcc.py
def ea_eom(self, **kwargs: Any) -> EA_REOM:
    """Get the EA-EOM object.

    Args:
        options: Options for the EA-EOM calculation.
        **kwargs: Additional keyword arguments.

    Returns:
        EA-EOM object.
    """
    return EA_REOM(self, **kwargs)

ebcc.cc.rebcc.REBCC.ee_eom(**kwargs)

Get the EE-EOM object.

Parameters:
  • options

    Options for the EE-EOM calculation.

  • **kwargs (Any, default: {} ) –

    Additional keyword arguments.

Returns:
Source code in ebcc/cc/rebcc.py
def ee_eom(self, **kwargs: Any) -> EE_REOM:
    """Get the EE-EOM object.

    Args:
        options: Options for the EE-EOM calculation.
        **kwargs: Additional keyword arguments.

    Returns:
        EE-EOM object.
    """
    return EE_REOM(self, **kwargs)

ebcc.cc.rebcc.REBCC.init_space()

Initialise the fermionic space.

Returns:
  • SpaceType

    Fermionic space. All fermionic degrees of freedom are assumed to be correlated.

Source code in ebcc/cc/rebcc.py
def init_space(self) -> SpaceType:
    """Initialise the fermionic space.

    Returns:
        Fermionic space. All fermionic degrees of freedom are assumed to be correlated.
    """
    space = Space(
        self.mo_occ > 0,
        np.zeros(self.mo_occ.shape, dtype=np.bool_),
        np.zeros(self.mo_occ.shape, dtype=np.bool_),
    )
    return space

ebcc.cc.rebcc.REBCC.init_amps(eris=None)

Initialise the cluster amplitudes.

Parameters:
  • eris (Optional[ERIsInputType], default: None ) –

    Electron repulsion integrals.

Returns:
  • Namespace[SpinArrayType]

    Initial cluster amplitudes.

Source code in ebcc/cc/rebcc.py
def init_amps(self, eris: Optional[ERIsInputType] = None) -> Namespace[SpinArrayType]:
    """Initialise the cluster amplitudes.

    Args:
        eris: Electron repulsion integrals.

    Returns:
        Initial cluster amplitudes.
    """
    eris = self.get_eris(eris)
    amplitudes: Namespace[SpinArrayType] = util.Namespace()

    # Build T amplitudes:
    for name, key, n in self.ansatz.fermionic_cluster_ranks(spin_type=self.spin_type):
        if n == 1:
            amplitudes[name] = self.fock[key] / self.energy_sum(key)
        elif n == 2:
            key_t = key[0] + key[2] + key[1] + key[3]
            amplitudes[name] = np.transpose(eris[key_t], (0, 2, 1, 3)) / self.energy_sum(key)
        else:
            shape = tuple(self.space.size(k) for k in key)
            amplitudes[name] = np.zeros(shape, dtype=types[float])

    # Build S amplitudes:
    for name, key, n in self.ansatz.bosonic_cluster_ranks(spin_type=self.spin_type):
        if self.omega is None or self.G is None:
            raise ValueError("Bosonic parameters not set.")
        if n == 1:
            amplitudes[name] = -self.G / self.omega
        else:
            shape = (self.nbos,) * n
            amplitudes[name] = np.zeros(shape, dtype=types[float])

    # Build U amplitudes:
    for name, key, nf, nb in self.ansatz.coupling_cluster_ranks(spin_type=self.spin_type):
        if self.omega is None or self.g is None:
            raise ValueError("Bosonic parameters not set.")
        if nf != 1:
            raise util.ModelNotImplemented
        if nb == 1:
            amplitudes[name] = self.g[key] / self.energy_sum(key)
        else:
            shape = (self.nbos,) * nb + tuple(self.space.size(k) for k in key[nb:])
            amplitudes[name] = np.zeros(shape, dtype=types[float])

    return amplitudes

ebcc.cc.rebcc.REBCC.init_lams(amplitudes=None)

Initialise the cluster lambda amplitudes.

Parameters:
  • amplitudes (Optional[Namespace[SpinArrayType]], default: None ) –

    Cluster amplitudes.

Returns:
  • Namespace[SpinArrayType]

    Initial cluster lambda amplitudes.

Source code in ebcc/cc/rebcc.py
def init_lams(
    self, amplitudes: Optional[Namespace[SpinArrayType]] = None
) -> Namespace[SpinArrayType]:
    """Initialise the cluster lambda amplitudes.

    Args:
        amplitudes: Cluster amplitudes.

    Returns:
        Initial cluster lambda amplitudes.
    """
    if not amplitudes:
        amplitudes = self.amplitudes
    lambdas: Namespace[SpinArrayType] = util.Namespace()

    # Build L amplitudes:
    for name, key, n in self.ansatz.fermionic_cluster_ranks(spin_type=self.spin_type):
        lname = name.replace("t", "l")
        perm = list(range(n, 2 * n)) + list(range(n))
        lambdas[lname] = np.transpose(amplitudes[name], perm)

    # Build LS amplitudes:
    for name, key, n in self.ansatz.bosonic_cluster_ranks(spin_type=self.spin_type):
        lname = "l" + name
        lambdas[lname] = amplitudes[name]

    # Build LU amplitudes:
    for name, key, nf, nb in self.ansatz.coupling_cluster_ranks(spin_type=self.spin_type):
        if nf != 1:
            raise util.ModelNotImplemented
        lname = "l" + name
        perm = list(range(nb)) + [nb + 1, nb]
        lambdas[lname] = np.transpose(amplitudes[name], perm)

    return lambdas

ebcc.cc.rebcc.REBCC.update_amps(eris=None, amplitudes=None)

Update the cluster amplitudes.

Parameters:
  • eris (Optional[ERIsInputType], default: None ) –

    Electron repulsion integrals.

  • amplitudes (Optional[Namespace[SpinArrayType]], default: None ) –

    Cluster amplitudes.

Returns:
  • Namespace[SpinArrayType]

    Updated cluster amplitudes.

Source code in ebcc/cc/rebcc.py
def update_amps(
    self,
    eris: Optional[ERIsInputType] = None,
    amplitudes: Optional[Namespace[SpinArrayType]] = None,
) -> Namespace[SpinArrayType]:
    """Update the cluster amplitudes.

    Args:
        eris: Electron repulsion integrals.
        amplitudes: Cluster amplitudes.

    Returns:
        Updated cluster amplitudes.
    """
    amplitudes = self._get_amps(amplitudes=amplitudes)
    func, kwargs = self._load_function(
        "update_amps",
        eris=eris,
        amplitudes=amplitudes,
    )
    res: Namespace[SpinArrayType] = func(**kwargs)
    res = util.Namespace(**{key.rstrip("new"): val for key, val in res.items()})

    # Divide T amplitudes:
    for name, key, n in self.ansatz.fermionic_cluster_ranks(spin_type=self.spin_type):
        res[name] /= self.energy_sum(key)
        res[name] += amplitudes[name]

    # Divide S amplitudes:
    for name, key, n in self.ansatz.bosonic_cluster_ranks(spin_type=self.spin_type):
        res[name] /= self.energy_sum(key)
        res[name] += amplitudes[name]

    # Divide U amplitudes:
    for name, key, nf, nb in self.ansatz.coupling_cluster_ranks(spin_type=self.spin_type):
        if nf != 1:
            raise util.ModelNotImplemented
        res[name] /= self.energy_sum(key)
        res[name] += amplitudes[name]

    return res

ebcc.cc.rebcc.REBCC.update_lams(eris=None, amplitudes=None, lambdas=None, lambdas_pert=None, perturbative=False)

Update the cluster lambda amplitudes.

Parameters:
  • eris (Optional[ERIsInputType], default: None ) –

    Electron repulsion integrals.

  • amplitudes (Optional[Namespace[SpinArrayType]], default: None ) –

    Cluster amplitudes.

  • lambdas (Optional[Namespace[SpinArrayType]], default: None ) –

    Cluster lambda amplitudes.

  • lambdas_pert (Optional[Namespace[SpinArrayType]], default: None ) –

    Perturbative cluster lambda amplitudes.

  • perturbative (bool, default: False ) –

    Flag to include perturbative correction.

Returns:
  • Namespace[SpinArrayType]

    Updated cluster lambda amplitudes.

Source code in ebcc/cc/rebcc.py
def update_lams(
    self,
    eris: Optional[ERIsInputType] = None,
    amplitudes: Optional[Namespace[SpinArrayType]] = None,
    lambdas: Optional[Namespace[SpinArrayType]] = None,
    lambdas_pert: Optional[Namespace[SpinArrayType]] = None,
    perturbative: bool = False,
) -> Namespace[SpinArrayType]:
    """Update the cluster lambda amplitudes.

    Args:
        eris: Electron repulsion integrals.
        amplitudes: Cluster amplitudes.
        lambdas: Cluster lambda amplitudes.
        lambdas_pert: Perturbative cluster lambda amplitudes.
        perturbative: Flag to include perturbative correction.

    Returns:
        Updated cluster lambda amplitudes.
    """
    # TODO active
    amplitudes = self._get_amps(amplitudes=amplitudes)
    lambdas = self._get_lams(lambdas=lambdas, amplitudes=amplitudes)
    if lambdas_pert is not None:
        lambdas.update(lambdas_pert)

    func, kwargs = self._load_function(
        "update_lams%s" % ("_perturbative" if perturbative else ""),
        eris=eris,
        amplitudes=amplitudes,
        lambdas=lambdas,
    )
    res: Namespace[SpinArrayType] = func(**kwargs)
    res = util.Namespace(**{key.rstrip("new"): val for key, val in res.items()})

    # Divide T amplitudes:
    for name, key, n in self.ansatz.fermionic_cluster_ranks(
        spin_type=self.spin_type, which="l"
    ):
        res[name] /= self.energy_sum(key)
        if not perturbative:
            res[name] += lambdas[name]

    # Divide S amplitudes:
    for name, key, n in self.ansatz.bosonic_cluster_ranks(spin_type=self.spin_type, which="l"):
        res[name] /= self.energy_sum(key)
        if not perturbative:
            res[name] += lambdas[name]

    # Divide U amplitudes:
    for name, key, nf, nb in self.ansatz.coupling_cluster_ranks(
        spin_type=self.spin_type, which="l"
    ):
        if nf != 1:
            raise util.ModelNotImplemented
        res[name] /= self.energy_sum(key)
        if not perturbative:
            res[name] += lambdas[name]

    if perturbative:
        res = util.Namespace(**{key + "pert": val for key, val in res.items()})

    return res

ebcc.cc.rebcc.REBCC.make_rdm1_f(eris=None, amplitudes=None, lambdas=None, hermitise=True)

Make the one-particle fermionic reduced density matrix :math:\langle i^+ j \rangle.

Parameters:
  • eris (Optional[ERIsInputType], default: None ) –

    Electron repulsion integrals.

  • amplitudes (Optional[Namespace[SpinArrayType]], default: None ) –

    Cluster amplitudes.

  • lambdas (Optional[Namespace[SpinArrayType]], default: None ) –

    Cluster lambda amplitudes.

  • hermitise (bool, default: True ) –

    Hermitise the density matrix.

Returns:
  • NDArray[T]

    One-particle fermion reduced density matrix.

Source code in ebcc/cc/rebcc.py
def make_rdm1_f(
    self,
    eris: Optional[ERIsInputType] = None,
    amplitudes: Optional[Namespace[SpinArrayType]] = None,
    lambdas: Optional[Namespace[SpinArrayType]] = None,
    hermitise: bool = True,
) -> NDArray[T]:
    r"""Make the one-particle fermionic reduced density matrix :math:`\langle i^+ j \rangle`.

    Args:
        eris: Electron repulsion integrals.
        amplitudes: Cluster amplitudes.
        lambdas: Cluster lambda amplitudes.
        hermitise: Hermitise the density matrix.

    Returns:
        One-particle fermion reduced density matrix.
    """
    func, kwargs = self._load_function(
        "make_rdm1_f",
        eris=eris,
        amplitudes=amplitudes,
        lambdas=lambdas,
    )
    dm: NDArray[T] = func(**kwargs)

    if hermitise:
        dm = (dm + np.transpose(dm)) * 0.5

    return dm

ebcc.cc.rebcc.REBCC.make_rdm2_f(eris=None, amplitudes=None, lambdas=None, hermitise=True)

Make the two-particle fermionic reduced density matrix :math:\langle i^+j^+lk \rangle.

Parameters:
  • eris (Optional[ERIsInputType], default: None ) –

    Electron repulsion integrals.

  • amplitudes (Optional[Namespace[SpinArrayType]], default: None ) –

    Cluster amplitudes.

  • lambdas (Optional[Namespace[SpinArrayType]], default: None ) –

    Cluster lambda amplitudes.

  • hermitise (bool, default: True ) –

    Hermitise the density matrix.

Returns:
  • NDArray[T]

    Two-particle fermion reduced density matrix.

Source code in ebcc/cc/rebcc.py
def make_rdm2_f(
    self,
    eris: Optional[ERIsInputType] = None,
    amplitudes: Optional[Namespace[SpinArrayType]] = None,
    lambdas: Optional[Namespace[SpinArrayType]] = None,
    hermitise: bool = True,
) -> NDArray[T]:
    r"""Make the two-particle fermionic reduced density matrix :math:`\langle i^+j^+lk \rangle`.

    Args:
        eris: Electron repulsion integrals.
        amplitudes: Cluster amplitudes.
        lambdas: Cluster lambda amplitudes.
        hermitise: Hermitise the density matrix.

    Returns:
        Two-particle fermion reduced density matrix.
    """
    func, kwargs = self._load_function(
        "make_rdm2_f",
        eris=eris,
        amplitudes=amplitudes,
        lambdas=lambdas,
    )
    dm: NDArray[T] = func(**kwargs)

    if hermitise:
        dm = (np.transpose(dm, (0, 1, 2, 3)) + np.transpose(dm, (2, 3, 0, 1))) * 0.5
        dm = (np.transpose(dm, (0, 1, 2, 3)) + np.transpose(dm, (1, 0, 3, 2))) * 0.5

    return dm

ebcc.cc.rebcc.REBCC.make_eb_coup_rdm(eris=None, amplitudes=None, lambdas=None, unshifted=True, hermitise=True)

Make the electron-boson coupling reduced density matrix.

.. math:: \langle b^+ i^+ j \rangle

and

.. math:: \langle b i^+ j \rangle

Parameters:
  • eris (Optional[ERIsInputType], default: None ) –

    Electron repulsion integrals.

  • amplitudes (Optional[Namespace[SpinArrayType]], default: None ) –

    Cluster amplitudes.

  • lambdas (Optional[Namespace[SpinArrayType]], default: None ) –

    Cluster lambda amplitudes.

  • unshifted (bool, default: True ) –

    If self.options.shift is True, return the unshifted density matrix. Has no effect if self.options.shift is False.

  • hermitise (bool, default: True ) –

    Hermitise the density matrix.

Returns:
  • NDArray[T]

    Electron-boson coupling reduced density matrix.

Source code in ebcc/cc/rebcc.py
def make_eb_coup_rdm(
    self,
    eris: Optional[ERIsInputType] = None,
    amplitudes: Optional[Namespace[SpinArrayType]] = None,
    lambdas: Optional[Namespace[SpinArrayType]] = None,
    unshifted: bool = True,
    hermitise: bool = True,
) -> NDArray[T]:
    r"""Make the electron-boson coupling reduced density matrix.

    .. math::
        \langle b^+ i^+ j \rangle

    and

    .. math::
        \langle b i^+ j \rangle

    Args:
        eris: Electron repulsion integrals.
        amplitudes: Cluster amplitudes.
        lambdas: Cluster lambda amplitudes.
        unshifted: If `self.options.shift` is `True`, return the unshifted density matrix. Has
            no effect if `self.options.shift` is `False`.
        hermitise: Hermitise the density matrix.

    Returns:
        Electron-boson coupling reduced density matrix.
    """
    func, kwargs = self._load_function(
        "make_eb_coup_rdm",
        eris=eris,
        amplitudes=amplitudes,
        lambdas=lambdas,
    )
    dm_eb: NDArray[T] = func(**kwargs)

    if hermitise:
        dm_eb = np.array(
            [
                (dm_eb[0] + np.transpose(dm_eb[1], (0, 2, 1))) * 0.5,
                (dm_eb[1] + np.transpose(dm_eb[0], (0, 2, 1))) * 0.5,
            ]
        )

    if unshifted and self.options.shift:
        rdm1_f = self.make_rdm1_f(hermitise=hermitise)
        shift = util.einsum("x,ij->xij", self.xi, rdm1_f)
        dm_eb -= shift[None]

    return dm_eb

ebcc.cc.rebcc.REBCC.energy_sum(*args, signs_dict=None)

Get a direct sum of energies.

Parameters:
  • *args (str, default: () ) –

    Energies to sum. Should specify a subscript only.

  • signs_dict (Optional[dict[str, str]], default: None ) –

    Signs of the energies in the sum. Default sets ("o", "O", "i") to be positive, and ("v", "V", "a", "b") to be negative.

Returns:
  • NDArray[T]

    Sum of energies.

Source code in ebcc/cc/rebcc.py
def energy_sum(self, *args: str, signs_dict: Optional[dict[str, str]] = None) -> NDArray[T]:
    """Get a direct sum of energies.

    Args:
        *args: Energies to sum. Should specify a subscript only.
        signs_dict: Signs of the energies in the sum. Default sets `("o", "O", "i")` to be
            positive, and `("v", "V", "a", "b")` to be negative.

    Returns:
        Sum of energies.
    """
    (subscript,) = args
    n = 0

    def next_char() -> str:
        nonlocal n
        if n < 26:
            char = chr(ord("a") + n)
        else:
            char = chr(ord("A") + n)
        n += 1
        return char

    if signs_dict is None:
        signs_dict = {}
    for k, s in zip("vVaoOib", "---+++-"):
        if k not in signs_dict:
            signs_dict[k] = s

    energies = []
    for key in subscript:
        factor = 1 if signs_dict[key] == "+" else -1
        if key == "b":
            assert self.omega is not None
            energies.append(self.omega * types[float](factor))
        else:
            energies.append(np.diag(self.fock[key + key]) * types[float](factor))

    subscript = ",".join([next_char() for k in subscript])
    energy_sum = util.dirsum(subscript, *energies)

    return energy_sum

ebcc.cc.rebcc.REBCC.amplitudes_to_vector(amplitudes)

Construct a vector containing all of the amplitudes used in the given ansatz.

Parameters:
  • amplitudes (Namespace[SpinArrayType]) –

    Cluster amplitudes.

Returns:
  • NDArray[T]

    Cluster amplitudes as a vector.

Source code in ebcc/cc/rebcc.py
def amplitudes_to_vector(self, amplitudes: Namespace[SpinArrayType]) -> NDArray[T]:
    """Construct a vector containing all of the amplitudes used in the given ansatz.

    Args:
        amplitudes: Cluster amplitudes.

    Returns:
        Cluster amplitudes as a vector.
    """
    vectors = []

    for name, key, n in self.ansatz.fermionic_cluster_ranks(spin_type=self.spin_type):
        vectors.append(np.ravel(amplitudes[name]))

    for name, key, n in self.ansatz.bosonic_cluster_ranks(spin_type=self.spin_type):
        vectors.append(np.ravel(amplitudes[name]))

    for name, key, nf, nb in self.ansatz.coupling_cluster_ranks(spin_type=self.spin_type):
        vectors.append(np.ravel(amplitudes[name]))

    return np.concatenate(vectors)

ebcc.cc.rebcc.REBCC.vector_to_amplitudes(vector)

Construct a namespace of amplitudes from a vector.

Parameters:
  • vector (NDArray[T]) –

    Cluster amplitudes as a vector.

Returns:
  • Namespace[SpinArrayType]

    Cluster amplitudes.

Source code in ebcc/cc/rebcc.py
def vector_to_amplitudes(self, vector: NDArray[T]) -> Namespace[SpinArrayType]:
    """Construct a namespace of amplitudes from a vector.

    Args:
        vector: Cluster amplitudes as a vector.

    Returns:
        Cluster amplitudes.
    """
    amplitudes: Namespace[SpinArrayType] = util.Namespace()
    i0 = 0

    for name, key, n in self.ansatz.fermionic_cluster_ranks(spin_type=self.spin_type):
        shape = tuple(self.space.size(k) for k in key)
        size = util.prod(shape)
        amplitudes[name] = np.reshape(vector[i0 : i0 + size], shape)
        i0 += size

    for name, key, n in self.ansatz.bosonic_cluster_ranks(spin_type=self.spin_type):
        shape = (self.nbos,) * n
        size = util.prod(shape)
        amplitudes[name] = np.reshape(vector[i0 : i0 + size], shape)
        i0 += size

    for name, key, nf, nb in self.ansatz.coupling_cluster_ranks(spin_type=self.spin_type):
        shape = (self.nbos,) * nb + tuple(self.space.size(k) for k in key[nb:])
        size = util.prod(shape)
        amplitudes[name] = np.reshape(vector[i0 : i0 + size], shape)
        i0 += size

    return amplitudes

ebcc.cc.rebcc.REBCC.lambdas_to_vector(lambdas)

Construct a vector containing all of the lambda amplitudes used in the given ansatz.

Parameters:
  • lambdas (Namespace[SpinArrayType]) –

    Cluster lambda amplitudes.

Returns:
  • NDArray[T]

    Cluster lambda amplitudes as a vector.

Source code in ebcc/cc/rebcc.py
def lambdas_to_vector(self, lambdas: Namespace[SpinArrayType]) -> NDArray[T]:
    """Construct a vector containing all of the lambda amplitudes used in the given ansatz.

    Args:
        lambdas: Cluster lambda amplitudes.

    Returns:
        Cluster lambda amplitudes as a vector.
    """
    vectors = []

    for name, key, n in self.ansatz.fermionic_cluster_ranks(
        spin_type=self.spin_type, which="l"
    ):
        vectors.append(np.ravel(lambdas[name]))

    for name, key, n in self.ansatz.bosonic_cluster_ranks(spin_type=self.spin_type, which="l"):
        vectors.append(np.ravel(lambdas[name]))

    for name, key, nf, nb in self.ansatz.coupling_cluster_ranks(
        spin_type=self.spin_type, which="l"
    ):
        vectors.append(np.ravel(lambdas[name]))

    return np.concatenate(vectors)

ebcc.cc.rebcc.REBCC.vector_to_lambdas(vector)

Construct a namespace of lambda amplitudes from a vector.

Parameters:
  • vector (NDArray[T]) –

    Cluster lambda amplitudes as a vector.

Returns:
  • Namespace[SpinArrayType]

    Cluster lambda amplitudes.

Source code in ebcc/cc/rebcc.py
def vector_to_lambdas(self, vector: NDArray[T]) -> Namespace[SpinArrayType]:
    """Construct a namespace of lambda amplitudes from a vector.

    Args:
        vector: Cluster lambda amplitudes as a vector.

    Returns:
        Cluster lambda amplitudes.
    """
    lambdas: Namespace[SpinArrayType] = util.Namespace()
    i0 = 0

    for name, key, n in self.ansatz.fermionic_cluster_ranks(
        spin_type=self.spin_type, which="l"
    ):
        shape = tuple(self.space.size(k) for k in key)
        size = util.prod(shape)
        lambdas[name] = np.reshape(vector[i0 : i0 + size], shape)
        i0 += size

    for name, key, n in self.ansatz.bosonic_cluster_ranks(spin_type=self.spin_type, which="l"):
        shape = (self.nbos,) * n
        size = util.prod(shape)
        lambdas[name] = np.reshape(vector[i0 : i0 + size], shape)
        i0 += size

    for name, key, nf, nb in self.ansatz.coupling_cluster_ranks(
        spin_type=self.spin_type, which="l"
    ):
        shape = (self.nbos,) * nb + tuple(self.space.size(k) for k in key[nb:])
        size = util.prod(shape)
        lambdas[name] = np.reshape(vector[i0 : i0 + size], shape)
        i0 += size

    return lambdas

ebcc.cc.rebcc.REBCC.get_mean_field_G()

Get the mean-field boson non-conserving term.

Returns:
  • NDArray[T]

    Mean-field boson non-conserving term.

Source code in ebcc/cc/rebcc.py
def get_mean_field_G(self) -> NDArray[T]:
    """Get the mean-field boson non-conserving term.

    Returns:
        Mean-field boson non-conserving term.
    """
    # FIXME should this also sum in frozen orbitals?
    assert self.omega is not None
    assert self.g is not None
    boo: NDArray[T] = self.g.boo
    val = util.einsum("Ipp->I", boo) * 2.0
    val -= self.xi * self.omega
    if self.bare_G is not None:
        val += self.bare_G
    return val